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The surface of a contact discontinuity is defined from the equality [PI = 0. The remaining 

conditions (1.6) are satisfied by virtue of the equality u, = 0. Hence, any two solutions of 

(5.1) with intersecting flow domains are coupled along a surface of the same pressure through 

a contact discontinuity. 
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EFFECT OF SPHERICALLY SYMMETRIC MASS FLOW FROM THE SURFACE OF A 
PARTICLE ON THE FORCE OF INTERACTION WITH A PLANE SURFACE* 

A.M. GOLOVIN and A.F. RCGOVOI 

A stationary velocity field of the flow of a gaseous medium generated by 

uniform radial injection from the surface of a spherical particle near a 

wall is considered in the Stokes' approximation. Bispherical coordinates 
are used to write the expression for the stream function. A formula is 
obtained for the force acting on the spherical particle when there is 

an arbitrary mass flow from its surface, generalizing earlier results /l, 

2/. An expression for the force acting on the particle is obtained for 
the case of spherically symmetric injection from the surface of the 

particle, and asymptotic formulas at short and long distances from the 

wall are studied. 

An analogous problem concerning the forces of interaction between two 
spherical particles of the same radius, when uniform injection of equal 
intensity takes place from their surfaces, is discussed. This is equival- 
ent to the problem of the interaction of a spherical particle with a free 
surface. A general expression for the force of interaction, and its 
asymptotic forms for short and long distances, are obtained. 

1. Formulation of the problem. Evaporation from a spherical particle near a solid 
or free surface, caused by various processes taking place in the gaseous medium, at the surface 
and inside of the particle, can be regarded in certain cases as being close tu spherically 
symmetric. 

Let us consider, for example, a particle with internal heat emission, situated near a 
wall at a uniform temperature Tw, equal to the temperature of the gaseous medium far from 
the particle. We shall assume that the heat flux from the surface of the particleisgoverned 
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by molecular thermal conductivity and radiation, and we shall assume that the path length of 
the radiation considerably the distance from the centre of the particle to the wall. Let the 
thermal conductivity of the gas surrounding the particle be vanishingly small compared with 
the thermal conductivity of the particle. This means that the temperature gradients within 
the particle will be small compared with those occurring the gaseous medium. 

In the quasilinear approximation the velocity of the mass flux from the surface of the 
particle will be given by the balance of the energy fluxes from its surface: 

pLru = x3Ti3rL + ~LQ, pLw, =z L/3p’ka f w (T,,’ - T,‘) 

Here p, p' is the density of the gaseous medium and the particle, respectively, L is the 
latent heat of evaporation, it is the molecular thermal conductivity, n is the unit vector of 
outer normal to the element of the particle surface, k is the intensity of internal evolution 
of heat, a is the particle radius, T, is its surface temperature, 43 is the Stefan-Boltzmann 
constant and E is the effective degree of blackness of the particle surface. 

From this we see that in order to calculate the mass flux from the surfaceoftheparticle, 
we must solve the corresponding thermal problem, except in the cases when the internal heat 
emission is sufficiently intense or the radiation flux is considerable, in which case we can 
assume that w z WQ. The latter relation holds when 

pL+, i> (x’d) 1 T, - Ta 1 

Here d is the characteristic scale of temperature variation near the particle, d=n 

if It>,a and d=h-n if h-aaaa. 
Analogous estimates can be obtained for a particle with internal heat emission near the 

free surface. 
In a cylindrical system of coordinates, where the s axis passes through the centre fz = h) 

of the spherical particle in a direction perpendicular to the wall (z = 0), the stationary 
axisymmetric flow in the case of spatially homogeneous injection from the surface of the 

particle, is described in the Stokes approximation by the following equation and the corre- 
sponding boundary conditions: 

Let us introduce the bispherical coordinates E. rl* rp connected with the cylindrical 

coordinates r,z,q by the relations 

Mere rp is the azimuthal angle unique for the cylindrical and bispherical systems of 
coordinates, and c is the parameter of the coordinate system found from the ratio of the 
distance h between the particle centre and the wall, and the radius a of the particle 

c = sh &,, hia = ch &, 

where 5 = 50 (5,>0) is the equation of the surface of the particle in the bispherical system 
of coordinates. 

The boundary value problem (1.1) for determining the stream function becomes, in 

bispherical coordinates, 

LPlr, = 0 

( 
ctle-p D2=-$--[-$+h~-p)~ 

(f-$)+ (ChB-PI;]) 

9 (5,. P) = - 
(chI,--I)tf+PL) 

ch50-P ’ 

Mw=+ (O,p)L=o; 540. 

The general solution of Eq.Cl.2) is 

(1.2) 

-I- 

+$dq=o 
p-+1, g=o 

(1.3) 
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u,(~)=A,~h(n+)E+ W+-+ 

c,ch(n-t~)E-i-Dnsh(nt~)E 

V,(t*)=P,-I@)-- PTI,l(PF 24m* *m = 

Here A,, B,. c,, D, are arbitrary constants determined from the boundary conditions and 
P,(p) is the Leqendre polynomial. 

The function (1.3) differs from the known solution of the Stokes equations in bispherical 
coordinates /l, 2/ in the zeroth term, which is determined in such a manner that the stream 
function satisfies the condition $=O when q=n. This makes it possible to simplify the 
problem by choosing 21 = 0 when 5 = 0. It can be confirmed by direct substitution that when 

v, W is defined in this manner, the function $((5,~) remains a solution of Eq.cl.2) when the 
values of the constants A,, B,, Co, Do are arbitrary. 

In the Stokes approximation the expression for the unique non-zero component of the force 
acting on the particle has the form /l, 2/ 

Here ds is the element of length of the contour of the meridian cross-section of the 
spherical particle. The integration over ds is carried out in the direction lee X nl, where 
e, is the unit vector chosen in the same manner as in the case of a cylindrical system of 
coordinates. The difference in sign in (1.4) as compared with /l, 2/ is the result of choosing 
a function 111 of different sign in the formulas which give the velocity components in terms 
of the stream function. 

Changing in expression (1.4) to bispherical coordinates, we obtain 

Substituting the general expression for the stream function (1.3) into (1.5) we obtain 
the following result: 

K-G [A,(&- 1) + @Do-B&d+ + 

3Cll ch50 chEo--1 + 2 (2n + I)& + & 4-G + D")] 
nsg 

(1.6) 

Formula (1.6) represents a generalization of the well-known expression for the force 
acting on a particle in a viscous fluid /l, 2/ to the case of an arbitrary mass flux from its 
surface, and this results in the appearance of additional terms containing A,, B,, C, and D,. 

2. Determining the coefficients in the problem of the interaction between 
a particle and a plane surface. The stream function (1.3) must satisfy the boundary 
conditions of adhesion (1.2) at the plane wall. From this it follows that 

&,=-CC,, B,=--MD,,, n>O (2.1) 

We obtain the remaining coefficients using the assumption (1.2) that we have a uniform 
radial injection from the surface of the spherical particle. In this case we have 

~~~,(Sof1',Ct=--(ch~~-1)(1Ip)i/chE,-- 

Differentiating these relations with respect to the variable 

dV,,idp = - (2n f I)P,, 
it, taking the relation 

into account, followed by an expansion of the right-hand sides of the resulting equations in 
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series in orthogonal Legendre polynomials, we obtain for each n? 0, a linear algebraic 
system of two equations for determining the coefficients A,,, B,, and their solution has the 
form 

A,, = GJA,, B, = H,,/A,, E = exp(-E,,) 

G, = -Q (p, + q,,E=‘), Q = ‘!bl/ff(Zn + l)(ch E, - 1) 

B, = Q (f, + g,P’), A ==[4ch(Zn+ I)& - 

(2n + l)ach2& + (2n "1, (2n';+;] 

Pn’ -+(4,+1)E- 8nzLT;3 f+ 

(2.2) 

qn=(n +- l)(zT.Lj + A!&!$E_ 

/,=2+(4n+l)E-(4nt-3)-&-t_ 

4n(n -c 1) (&Ea 2-L) 
a-1 Ed 

v( fE)E8 
n(Zn-11) 2 

From this we obtain the following expressions for the zeroth coefficients: 

A, = C, = 0, B, = 30, = 3/1/2 

When n> 1, we obtain, using (2.1) and (2.2), the following expression for the sum of 

the coefficients appearing in formula (1.6): 

The above sum enables 

particle and the wall 

A, + B, + C, + D, = 4B,/(2n + 3) 

us to calculate the dimensionless force of interaction between the 

t(2.3) 

A study of the behaviour of this expression at short and long distances from the wall 

compared with the radius of the particle, yields the following asymptotic expressions: 

The results of numerical calculations of the magnitude of the dimensionless force K 

acting on the particle and determined from formula (2.3), and the corresponding asymptotic 

formulas (2.4), as a function of E. or h/a, are given below: 

b=O.l 0.5 1 
h/o = 1.005 1.128 k&Z i.762 
K = 1170 

1,543 ?:32 
36.6 5.76 

Ko=lZUO 
0.444 0:145 

48 
1.47 

K, = 4.45 1.35 0.430 0.144 

From this we see that the asymptotic formulas (2.4) can be used even in the region of 

moderate values of &,. When h/a - l<lO-3 or h/a> 10, the error of the asymptotic formulas 

does not exceed 1%. 

3. Interaction of two spherical particles. In the case of two sphericalparticles 

of radius a whose centres are separated from each other by distance of 2h, the mass fluxes 
from their surfaces will lead to interaction between the particles. If the injection from 

their surfaces is of equal intensity, then their investigation reduces to computing the 

velocity field of the particles near the free surface (z = 0), The corresponding boundary 

value problem will differ from (1.1) only in a single boundary condition 

z = 0, v, = 0, av,iaz = 0 (3.1) 

We shall introduce the stream function + just as in the previous case. The stream 

function will be defined by the solution of problem (1.2), if we replace the condition on 

the wall at 5 = 0 by the condition on the free surface, which follows from (3.1), 
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The change in the boundary conditions will lead to the fact that the relations 

A,, = C, = 0 (3.2) 

in the general solution (1.3) will hold for any, n> 0. The remaining coefficients B,and 

B, will be determined, as before, from the boundary conditions at the surface of the spherical 

particle, as a result of solving the system of two algebraic equations for any n > 0. Hence 

we can obtain 

B, = M,!d,, D, = NJd, 

M,, = - Q (a,, - &E*“), N, = ‘I, Q (y, - S,E*“) 

d, = (2n + 1)2 [sh (2n + 1) E, - (2n + 1) sh E. ch E,] 

a,=2n+(4n+-3)$+ *A 

&I= 2"~~~~3E+n(2+E)Ea 

yn=4(n+l)+2(4n+fbE + wEa 

6,=4(n+ 1)+2(n+ I)++ 2n;;+;5) E 

(3.3) 

In the special case when n = 0 we have B, = 3/1/2, D, = 1 If% 
Substituting (3.2) and (3.3) into formula (1.6) we obtain the following expression: 

(3.4) 

Evaluating the terms in this sum, we obtain 

% + Q, = Q (fn - g,P”W, 
where f, and g, are determined from formulas (3.2) of the previous problem. 

The asymptotic formulas for the force of interaction between two particles have the form 

&<1, K=K,+= ' 
Z(@--I) (3.5) 

Fll>l1, K=K,=6E2 1$ -$E)=g(l++) 
( 

The results of computing the dimensionless force of interaction between the particles 

using (3.4) and the asymptotic formulas (3.5) are given below: 

40=0-i 0.5 
K=295 9.1 1.:2 0% 0.:3* 
K0=300 12 K, =1.26 o-399 0.132 

4. Discussion of the results. From formulas (2.3) and (3.4) it follows that the 
interaction of the particle with the wall, or of two particles with each other, is character- 

ized, when there is a spherically symmetric flow from the surfaces of the particles, by 

repulsion forces. If the mass flow is directed towards the surfaces of the particles (con- 

densation), then clearly we will have the forces of attraction. An approximation value of 
the first term of the asymptotic expansion (2.4) of the force acting on the particle when long 

distances separate the particle from the wall, can be found using the formulation of the 
general solution of the Stokes equation in spherical coordinates, with the origin at the centre 
of the particle, and in its mirror image relative to the wall, by restricting ourselves to 
terms containing the first three Gegenbauer polynomials. The loading term of the asymptotic 
expression (3.5) for the force of interaction between two particles at long distances is 

obvius, since it represents the Stokes formula in which the velocity of the flow impinging on 

the particle is the velocity generated by the second particle at a distance 2h. 
In the case of the asymptotic formula at short distances (h/u -l<l), the leading terms 

in formulas (2.4) and (3.5) can be obtained in the approximation of the hydrodynamic theory 

of lubrication. The first terms of the corresponding two- and three-term asymptotic expressions 
for the force acting on the spherical particle moving in a direction perpendicular to the 

plane wall or to the free 
the equivalence of these 

lubrication. 
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surface /3, 4/, agree with-formulas (2.4) and (3.5) by virtue of 

problems within the approximation of the hydrodynamic theory of 
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MASS TRANSFER IN A PULSATING BUBBLE* 

V.S. BERMAN and A.D. POLYANIN 

Mass transfer between a pulsating bubble and a surrounding medium at 
large and small Peclet numbers is considered. The dependence of the 
Sherwood number on time is found for an arbitrary periodic law of variation 
of the bubble radius. The case of sinusoidal oscillations is studied in 
detail. 

1. Dynamics of a pulsating bubble. The spherically symmetric oscillations of a 
bubble under various conditions have been studied in many publications (e.g. /l-7/). Let us 
list here the fundamental properties of such motions, which will be of use later when analysing 
mass transfer in a pulsating bubble. 

The radial component of the velocity of the fluid outside the bubble is described by the 
expression 

I', z RZR'/$+ R' = n'H:dt, (1.1) 

Here .r is the radial coordinate, t, is the time and R = /?(t,) is the law of motion of 
the bubble boundary, which can be found, under fairly general assumptions, by solving the 
differential equation /l-S/ 

p (RR” + 3i,R’2) + ItpR’,R = g, (R) + ‘pa (t*) (I.21 

where p and p is the dynamic viscosity and the density of the surrounding medium. 
In order to complete the formulation of the problem we must supplement Eq.(l.Z) by the 

initial conditions ri(0) = N,. R”(O)= 0 where R, is the initial radius of tine bubble. 
(Sometimes a periodic solution of Eq.(1.2) has to be found). 

The function g, in (1.2) is usually chosen in the form /l-5/ 

g* (R) = p,, (R,iR)“~ - p_ - 2aiR (1.3) 

where pm is the static pressure at infinity, 0 is the surface tension, y is the ratio of 
the specific heats and PSO’ is a constant whose dimensions are that of pressure. 

In the case of thin elastic spherical shells (e.g. a rubber ball) oscillating in a liquid 
or gas, a linear function R /a/ must be subtracted from the right-hand side of the expression 
(1.3) when cf = 0. 

In the case of forced oscillation of the bubble, 'p* in (1.2) is a T,-periodic function 
and is responsible for the variation in the pressure field. In this case we can assumed with- 
out loss of generality that the following condition holds: 
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